在回流焊中貼片晶振出現(xiàn)的常見問題及經(jīng)驗(yàn)分享
回流焊是用在貼片(SMT)中的主要板級(jí)互連方法,這種焊接方法把所需要的焊接特性極好地結(jié)合在一起,這些特性包括易于加工、對(duì)各種SMT設(shè)計(jì)有廣泛的兼容性,具有高的焊接可靠性以及成本低等;然而,在回流焊作為最重要的SMT貼片晶振級(jí)和板級(jí)互連方法的時(shí)候,常出現(xiàn)的問題歸納如下:
在此,先對(duì)第一面進(jìn)行印刷布線,安裝貼片晶振和軟熔,然后翻過來對(duì)電路板的另一面進(jìn)行加工處理,為了更加節(jié)省起見,某些工藝省去了對(duì)第一面的軟熔,而是同時(shí)軟熔頂面和底面,典型的例子是電路板底面上裝有很多小的其它元件如電容電阻,由于印刷電路板(PCB)的設(shè)計(jì)越來越復(fù)雜,結(jié)果軟熔時(shí)貼片晶振脫落成為一個(gè)重要的問題。顯然,貼片晶振脫落現(xiàn)象是由于軟熔時(shí)熔化了的焊料對(duì)貼片晶振的垂直固定力不足,而垂直固定力不足可歸因于個(gè)體較大的貼片晶振重量的增加,焊劑的潤(rùn)濕性或焊料量不足等。
未焊滿現(xiàn)象是在相鄰的引線之間形成焊橋。通常,所有能引起焊膏坍落的因素都會(huì)導(dǎo)致未焊滿,這些因素包括:
1,升溫速度太快;
2,焊膏的觸變性能太差或是焊膏的粘度在剪切后恢復(fù)太慢;
3,金屬負(fù)荷或固體含量太低;
4,粉料粒度分布太廣;
5;焊劑表面張力太小。
除了引起焊膏坍落的因素而外,下面的因素也引起未滿焊的常見原因:
1,相對(duì)于焊點(diǎn)之間的空間而言,焊膏熔敷太多;
2,加熱溫度過高;
3,焊膏受熱速度比電路板更快;
4,焊劑潤(rùn)濕速度太快;
5,焊劑蒸氣壓太低;
6,焊劑的溶劑成分太高;
7,焊劑樹脂軟化點(diǎn)太低。
亞穩(wěn)態(tài)的熔融焊料覆蓋層在最小表面能驅(qū)動(dòng)力的作用下會(huì)發(fā)生收縮,不一會(huì)兒之后就聚集成分離的小球和脊?fàn)疃d起物。斷續(xù)潤(rùn)濕也能由部件與熔化的焊料相接觸時(shí)放出的氣體而引起。由于有機(jī)物的熱分解或無機(jī)物的水合作用而釋放的水分都會(huì)產(chǎn)生氣體。水蒸氣是這些有關(guān)氣體的最常見的成份,在焊接溫度下,水蒸氣具極強(qiáng)的氧化作用,能夠氧化熔融焊料膜的表面或某些表面下的界面(典型的例子是在熔融焊料交界上的金屬氧化物表面)。常見的情況是較高的焊接溫度和較長(zhǎng)的停留時(shí)間會(huì)導(dǎo)致更為嚴(yán)重的斷續(xù)潤(rùn)濕現(xiàn)象,尤其是在基體金屬之中,反應(yīng)速度的增加會(huì)導(dǎo)致更加猛烈的氣體釋放。
與此同時(shí),較長(zhǎng)的停留時(shí)間也會(huì)延長(zhǎng)氣體釋放的時(shí)間。以上兩方面都會(huì)增加釋放出的氣體量,消除斷續(xù)潤(rùn)濕現(xiàn)象的方法是:
1,降低焊接溫度;
2,縮短軟熔的停留時(shí)間;
3,采用流動(dòng)的惰性氣氛;
4,降低污染程度。
對(duì)低殘留物的需求需要引起重視,針對(duì)不用清理的軟熔工藝而言,為了獲得裝飾上或功能上的效果,常常要求低殘留物,顯然,不用清理的低殘留物焊膏是滿足這個(gè)要求的一個(gè)理想的解決辦法,再此辦法執(zhí)行中建議使用惰性的軟熔氣氛。
關(guān)于間隙,間隙是指在貼片晶振引線與電路板焊點(diǎn)之間沒有形成焊接點(diǎn)。一般來說,這可歸因于以下四方面的原因:
1,焊料熔敷不足;
2,引線共面性差;
3,潤(rùn)濕不夠;
4,焊料損耗為了解決這個(gè)問題,在裝配之前用焊料來預(yù)涂覆焊點(diǎn),此法是擴(kuò)大局部焊點(diǎn)的尺寸并沿著鼓起的焊料預(yù)覆蓋區(qū)形成一個(gè)可控制的局部焊接區(qū),并由此來抵償引線共面性的變化和防止間隙,引線的芯吸作用可以通過減慢加熱速度以及讓底面比頂面受熱更多來加以解決,此外,使用潤(rùn)濕速度較慢的焊劑,較高的活化溫度或能延緩熔化的焊膏(如混有錫粉和鉛粉的焊膏)也能最大限度地減少芯吸作用。在用錫鉛覆蓋層光整電路板之前,用焊料掩膜來覆蓋連接路徑也能防止由附近的通孔引起的芯吸作用。
關(guān)于焊料成球,這種現(xiàn)象是最常見的也是最棘手的問題,這指軟熔工序中焊料在離主焊料熔池不遠(yuǎn)的地方凝固成大小不等的球粒;大多數(shù)的情況下,這些球粒是由焊膏中的焊料粉組成的,焊料成球使人們耽心會(huì)有電路短路、漏電和焊接點(diǎn)上焊料不足等問題發(fā)生。引起焊料成球的原因包括:
1,由于電路印制工藝不當(dāng)而造成的油漬;
2,焊膏過多地暴露在具有氧化作用的環(huán)境中;
3,焊膏過多地暴露在潮濕環(huán)境中;
4,不適當(dāng)?shù)募訜岱椒?
5,加熱速度太快;
6,預(yù)熱斷面太長(zhǎng);
7,焊料掩膜和焊膏間的相互作用;
8,焊劑活性不夠;
9,焊粉氧化物或污染過多;
10,塵粒太多;
11,在特定的軟熔處理中,焊劑里混入了不適當(dāng)?shù)膿]發(fā)物;
12,由于焊膏配方不當(dāng)而引起的焊料坍落;
13、焊膏使用前沒有充分恢復(fù)至室溫就打開包裝使用;
14、印刷厚度過厚導(dǎo)致“塌落”形成錫球;
15、焊膏中金屬含量偏低。
關(guān)于焊料結(jié)珠,這種問題是在使用焊膏和SMT工藝時(shí)焊料成球的一個(gè)特殊現(xiàn)象。,簡(jiǎn)單地說,焊珠是指那些非常大的焊球,其上粘帶有(或沒有)細(xì)小的焊料球。它們形成在具有極低的托腳的貼片晶振的周圍。焊料結(jié)珠是由焊劑排氣而引起,在預(yù)熱階段這種排氣作用超過了焊膏的內(nèi)聚力,排氣促進(jìn)了焊膏在低間隙貼片晶振下形成孤立的團(tuán)粒,在軟熔時(shí),熔化了的孤立焊膏再次從貼片晶振下冒出來,并聚結(jié)起。焊接結(jié)珠的原因包括:1,印刷電路的厚度太高;2,焊點(diǎn)和貼片晶振重疊太多;3,在貼片晶振下涂了過多的錫膏;4,安置貼片晶振的壓力太大;5,預(yù)熱時(shí)溫度上升速度太快;6,預(yù)熱溫度太高;7,在濕氣從貼片晶振和阻焊料中釋放出來;8,焊劑的活性太高;9,所用的粉料太細(xì);10,金屬負(fù)荷太低;11,焊膏坍落太多;12,焊粉氧化物太多;13,溶劑蒸氣壓不足。消除焊料結(jié)珠的最簡(jiǎn)易的方法也許是改變模版孔隙形狀,以使在低托腳貼片晶振和焊點(diǎn)之間夾有較少的焊膏。
焊接角焊接抬起指在波峰焊接后引線和焊接角焊縫從具有細(xì)微電路間距的四芯線組扁平集成電路(QFP)的焊點(diǎn)上完全抬起來,特別是在貼片晶振棱角附近的地方,一個(gè)可能的原因是在波峰焊前抽樣檢測(cè)時(shí)加在引線上的機(jī)械應(yīng)力,或者是在處理電路板時(shí)所受到的機(jī)械損壞,在波峰焊前抽樣檢測(cè)時(shí),用一個(gè)鑷子劃過貼片晶振的引線,以確定是否所有的引線在軟溶烘烤時(shí)都焊上了;其結(jié)果是產(chǎn)生了沒有對(duì)準(zhǔn)的焊趾,這可在從上向下觀察看到,如果板的下面加熱在焊接區(qū)/角焊縫的間界面上引起了部分二次軟熔,那么,從電路板抬起引線和角焊縫能夠減輕內(nèi)在的應(yīng)力,防止這個(gè)問題的一個(gè)辦法是在波峰焊之后(而不是在波峰焊之前)進(jìn)行抽樣檢查。
形成孔隙現(xiàn)象通常是一個(gè)與焊接接頭的相關(guān)的問題。尤其是應(yīng)用SMT技術(shù)來軟熔焊膏的時(shí)候,在采用無引線陶瓷芯片的情況下,絕大部分的大孔隙(>0。0005英寸/0.01毫米)是處于LCCC焊點(diǎn)和印刷電路板焊點(diǎn)之間,與此同時(shí),在LCCC城堡狀物附近的角焊縫中,僅有很少量的小孔隙,孔隙的存在會(huì)影響焊接接頭的機(jī)械性能,并會(huì)損害接頭的強(qiáng)度,延展性和疲勞壽命,這是因?yàn)榭紫兜纳L(zhǎng)會(huì)聚結(jié)成可延伸的裂紋并導(dǎo)致疲勞,孔隙也會(huì)使焊料的應(yīng)力和協(xié)變?cè)黾?這也是引起損壞的原因。
此外,焊料在凝固時(shí)會(huì)發(fā)生收縮,焊接電鍍通孔時(shí)的分層排氣以及夾帶焊劑等也是造成孔隙的原因。 在焊接過程中,形成孔隙的械制是比較復(fù)雜的,一般而言,孔隙是由軟熔時(shí)夾層狀結(jié)構(gòu)中的焊料中夾帶的焊劑排氣而造成的孔隙的形成主要由金屬化區(qū)的可焊性決定,并隨著焊劑活性的降低,粉末的金屬負(fù)荷的增加以及引線接頭下的覆蓋區(qū)的增加而變化,減少焊料顆粒的尺寸僅能銷許增加孔隙。此外,孔隙的形成也與焊料粉的聚結(jié)和消除固定金屬氧化物之間的時(shí)間分配有關(guān)。焊膏聚結(jié)越早,形成的孔隙也越多。通常,大孔隙的比例隨總孔隙量的增加而增加。與總孔隙量的分析結(jié)果所示的情況相比,那些有啟發(fā)性的引起孔隙形成因素將對(duì)焊接接頭的可靠性產(chǎn)生更大的影響。
相關(guān)資訊
- [2024-03-20]Jauch新型精密O 10.0-JTP53HCV-F-K-3...
- [2024-03-20]JAUCH新品O 10.0-JTS75HCV-F-K-3.3-1...
- [2024-03-12]Aker超微型C16-40.000-10-3030-A-X-R...
- [2024-03-12]PETERMANN的DLPO333-3225-E-15-W-125...
- [2024-03-08]IQD釋放32.768kHz的能量LFXTAL050789...
- [2024-03-08]IQD的CMOS、HCMOS和ACMOS振蕩器LFSPX...
- [2024-03-05]Wi2Wi推出TCXO的新TCH系列
- [2023-10-13]高標(biāo)準(zhǔn)的質(zhì)量管理體系彰顯IQD晶振的品...